
,,,,. J HWI M,,ss Trun$w Vol. 36. No. 6. pp. I471-1476, 1993 
Prmtcd I” Great Bntnm 

0017-9310/93S6.00+0.00 
s 1993 Pergamon Press Ltd 

Linear stability of natural convection in a 
tall vertical slot with a moving sidewall 

J.-C. CHEN and C.-K. HSIEH 
Department of Mechanical Engineering. National Central University. Chung-Li, Taiwan, R.O.C. 

(Received 27 April I992 and irlfinal form 6 Au,qusi 1992) 

Abstract-The effect of a shear force on the stability of natural convection in a tall vertical slot has been 
studied utilizing linear theory. Our results show that the stability of natural convection is significantly 
affected by the motion of the sidewall and that sidewall motion creates three types of instability. At small 
Prdndt) numbers. the shear instability is dominant. At higher Prandtl numbers. the flow becomes unstable. 
creating a buoyant instability induced by the boundary layer near the fixed (unmoving) sidewall. When 
the sidewall moves slightly downward, the buoyant instability induced by the boundary layer near that 
moving wall occurs for Prandtl numbers near IO. The critical Prandtl number which marks the transition 
between the shear and buoyant modes is strongly dependent on the direction and speed of the sidewall 

movement. 

1. INTRODUCTION 

CONVECTION stability in a vertical slot with differ- 
entially heated sidewalls has been studied by several 
authors [l-4]. The results showed that the stability 
limit is a function of. the Grashof and Prandtl 
numbers. For a small Prandtl number fluid 
(Pr < 12.7). the parallel flow undergoes a transition to 
a stationary multicell flow pattern when the Grashof 
number exceeds a critical value. This transition has 
been observed experimentally by Vest and Arpaci [5]. 
The critical Grashof number is weakly dependent on 
the Prandtl number, having the approximate value 
Gr, = 7700+5%. For a high Prandtl number fluid 
(Pr > 12.7), the unstable parallel flow becomes a pair 
of oscillatory travelling waves moving in opposite 
directions, and the critical Grashof number decreases 
as the Prandtl number increases. Korpela et al. [3] 
and Choi and Korpela [6], based on the results of 
Hart [7], concluded that the instability of the basic 
flow for a small Prandtl number fluid is induced by 
the shear mode, while for a high Prandtl number fluid, 
instability is caused by the buoyant mode. 

It is well known that the stability of a flow driven 
by combined shear and buoyancy forces is relevant to 
many industrial processes (such as heat pipe, and 
reactor core). These problems have not received 
adequate attention in the past. Recently, Mohamad 
and Viskanta [8] considered the effect of a shear stress 
resulting from the motion of the upper lid on the 
stability properties of the Rayleigh-BCnard problem. 
Their results showed that the flow is stabilized by 
the presence of a shear force for the values of the 
parameters they investigated (Pr = 0.01 and I). They 
also found that the travelling wave is generated by a 
moving lid. 

In the present study, we consider the linear stability 
of natural convection in a tall vertical slot while 

accounting for the influence of a shear force induced 
by the motion of the sidewall. In this problem, the 
basic flow is the Poiseuille flow, a buoyancy-driven 
flow, superposed by the Couette flow, a forced flow. 
It is well known that the Couette flow is always stable. 
Therefore, it is of interest to investigate the effect of a 
shear force on natural convection stability in a tall 
vertical slot. We chose the Reynolds, Grashof, and 
Prandtl numbers as the externally controllable par- 
ameters necessary to characterize the problem at 
hand. The effect of the Reynolds and Prandtl numbers 
on the critical Grashof number, critical wave number, 
and critical wave speed has been investigated. 

2. FORMULATION 

Consider two infinitely long, vertical parallel plates 
of distance L enclosing a Newtonian fluid. The tem- 
peratures of the left and right plates are T, and T?, 
respectively. The right plate is moving up at a constant 
velocity U,,. Figure 1 shows the problem configur- 
ation. The temperature difference is assumed to be 
small enough so that the density is treated as a con- 
stant everywhere in the governing equation, except in 
the gravitational term. The kinematic viscosity v. 
thermal diffusivity c(, and thermal expansion co- 
efficient /I are assumed to be constant. 

We seek a steady, parallel flow solution for the form 
(u, 11, w,p, 0) = [V(Y), O,O, P(Y), O(r)]. Assuming this 
to be possible, the solution for the basic state is given 
by 

U = -Re(2p3y’)/Gr-(y-3$+2y3) (1) 

0 =.)-l/2 (2) 

where Re = UpL/v is the Reynolds number and 
Gr = g/3ATL3/v’ the Grashof number. In equations 
(1) and (2), all quantities have been non- 
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NOMENCLATURE 

9 acceleration of gravity UP velocity of the moving right sidewall 
Gr Grashof number us basic velocity at the inflection point 
Gr, critical Grashof number x dimensionless, vertical coordinate 
k wave number in the x-direction opposite to gravity 
m wave number in the z-direction I’ dimensionless, horizontal coordinate 
L spacing between plates normal to wall. 
P dimensionless pressure 
P dimensionless pressure of basic state Greek symbols 
Pr Prandtl number thermal diffusivity 
Re Reynolds number ;1 thermal expansion coefficient 
RG ratio of Re to Gr 0 dimensionless temperature 
t dimensionless time 0 dimensionless temperature of basic state 
Till mean temperature of sidewalls V kinematic viscosity 
AT temperature difference between the P density 

sidewalls u complex growth rate. 
Ii, v, 11’ s, y. z-dimensionless velocity 

components Superscript 
u dimensionless velocity of the basic state ’ perturbation quantity. 

dimensionalized using the scales L, L’/v, and of the form: 
gjATL’/v for length, time, and velocity, respectively. 
The dimensionless temperature is defined as b’, v’, W’,P’, 4’) = [u*(Y), v*(Y), w*(Y),P*(Y), o*(Y)1 
[T- TJAT. 

We applied infinitesimal disturbances to the govern- 
ing equations using a standard method as follows : 

(24, v, w,p, e) = (U, o,o, P, 0) + (u’. v’, w’,p’, 0’). (3) 

After substitution into the governing equations and 
boundary conditions, we eliminated the portion 
resulting solely from the basic state, ignored second- 
and higher-order terms, and assumed normal modes 

FIG. I. Schematic diagram of the physical system. 

xexp(ikx+imz-iat) (4) 

where k and m are disturbance wave numbers in 
the x and z directions, respectively. The complex 
eigenvalue 0 

u = a,+ia, (5) 

contains the growth rate Qi and the frequency a,. If 
ui > 0 the basic state is unstable, while if cri < 0, it is 
linearly stable. 

The linear disturbance equations become 

iku* + Dv* + imw* = 0 (64 

-iau*+ikGr Uu*+Gr(DU)v* = 

-ikGrp*+ll*+(D’-m2-k2)u* (6b) 

-iav*+ikGrUv* = -GrDp*+(D’-m2-k2)v* 
(6~) 

-iaw*+ikGrUw* = -imGrp*+(D2-m2-k2)w* 
(64 

Pr[-id*+ikGr UB*+Gr(DO)v*] = 

(D2-m2-k2)B* (6e) 

where D = d/dy, and the Prandtl number is defined 
as Pr = u/v. The boundary conditions remain 

u*=u*=w*=0*=0 aty=Oandl. (7) 

According to the Squire theorem [9], the critical 
Grashof number can be obtained by considering two 
dimensional disturbances. By selecting m = w = 0, the 
linear disturbance equations for the marginal state 
(ui = 0) are 
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iku* + Du* = 0 @a) 
- ia,u* + i/c Gr Uu* + Gr(DU)u* = 

-ikGrp*+t?*+(D*-/ck?)U* (8b) 

-ia,u*+ikGrUu* = -GrDp*+(D*-k*)u* 
(8~) 

Pr[-ia$*+ikGr Uf3*+Gr(DO)u*] = (D*--/c*)f?* 
(84 

with 

u*=u*=O*=O aty=Oandl. (9) 

The disturbance equations (8) with boundary con- 
ditions (9) are solved numerically using a standard 
shooting procedure without orthonormalization. In 
this numerical procedure, a fourth-order Runge- 
Kutta scheme is used to integrate the disturbance 
equations. The number of integration steps employed 
in the calculations is 100. From these calculations and 
subsequent use of Newton’s method, values of Gr and 
w corresponding to marginal stability are obtained 
for fixed k, Re and Pr. For given values of Re and 
Pr, the critical Grashof number Gr, is the smallest 
marginal value of Gr over the space of wave number 
k. 

The computations described in this section were 
done in double-precision arithmetic on the National 
Central University Micro-Vax 3600 computer. 

3. RESULTS AND DISCUSSION 

The stability of natural convection in a vertical 
slot has been studied by Korpela et al. [3], using 
the Galerkin method to solve the linear disturbance 
equations. To justify our numerical results, test com- 
putations have been performed for Re = 0. The criti- 
cal Prandtl number at the transition between the shear 
mode and buoyant mode predicted by the present 
code is 12.5, which is very close to the prediction in 
ref. [3] (Pr = 12.7). The critical Grashof numbers for 
different Prandtl numbers are within 1% of the values 
listed in Table 1 of ref. [3]. 
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FIG. 2. Basic-state velocity profiles. FIG. 3. Function @ vs position y for different RG. 

Figure 2 shows basic-state velocity profiles obtained 
from equation (1). The dimensionless parameter RG 
that appears in Fig. 2 represents the ratio of Re to Cr. 
If RG > 0, the sidewall is moving up. For RG = 0, the 
vertical flow is induced only by the buoyancy force 
and is antisymmetric along the center of the slot. 
When Re is not equal to zero, the basic flow is a 
combination of the forced and buoyancy-driven flows, 
and the distribution of the vertical velocity is no longer 
antisymmetric. Fjsrtoft’s theorem [9] states that a 
necessary condition for an inviscid parallel flow to be 
linearly unstable is that CD = U”( U” - Us) < 0 some- 
where in the flow field, where Us is the velocity at the 
inflection point. Figure 3 is a plot of @ vsy for different 
RG. When RG = 0, m(y) is symmetric along x = 0.5, 
and its value is negative except at the center and slot 
boundaries. Based on Fjsrtoft’s theorem, it seems 
reasonable to infer that the two opposite travelling 
waves in the slot for Re = 0 and Pr > 12.7 are induced 
by the antisymmetric vertical velocity profile gen- 
erated by the buoyancy force. In other words, two 
boundary layers moving in opposite directions cause 
two oscillatory travelling waves also moving in 
opposite directions. For convenience, we chose mode 
A to denote the instability generated by the shear 
force, mode B for the boundary layer near the left 
wall and mode C for the boundary layer near the right 
wall. Looking at Fig. 3 in light of Fjrartoft’s theorem, 
it is clear that for Re # 0, mode B is more unstable 
than mode C. 

Figures 4 and 5 are plots of Gr, vs Pr for different 
values of Re. As expected, the stability boundary for 
Re = 0 determined by mode B coincides with the 
boundary based on mode C. We see from Fig. 4 that 
for Re = - 100, mode A is least unstable for small 
Prandtl number fluids (Pr < 8.1). For 8.1 < Pr < 10, 
the most unstable mode is C, and for further increases 
in Prandtl number, the most unstable mode is B. For 
Re = -200, the instability structure for Pr < 9 is 
mode A. As Pr increases, mode A is replaced by mode 
B, and mode C does not appear. Our conjecture is that 
the critical Prandtl number at the transition between 
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FIG. 4. The critical Grashof number vs Prandtl number for Re 
Re = 0, - 100 and -200. 

FIG. 6. The critical Grashof number vs Reynolds number for 
Pr = 5.0. 

shear and buoyant modes decreases as Re increases 
when the effect of mode C is not taken into con- 
sideration. For - 150 < Re < 0, the mode C induced 
by the buoyant force is most unstable in the area 
around Pr = 10, and if this effect is not taken into 
consideration, the predicted transition point will be 
higher than it is in actuality. Obviously, the critical 
Grashof number Gr, increases with decreasing Re 
except for values of Pr near 10. In the region near 
Pr = IO, the flow may be destabilized because of a 
switch in the instability mode. When Re > 0, the criti- 
cal Prandtl number at the transition between shear 
and buoyant modes increases as Re increases, and 
they are 15.6 and 19.5 for Re = 50 and 100, respec- 
tively. The buoyant instability is generated by mode 
B. Where mode B is dominant (higher Pr), the critical 
Grashof number Cr, increases when Re increases. For 
smaller Pr (Pr < 12.5), the instability is induced by 
the shear mode (mode A), and the critical Grashof 
number Gr, decreases with decreasing Re until the 
Reynolds number reaches a certain critical value: Re,. 
For Re > Re,, the critical Grashof number increases 
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as Re increases. When Re < 0, Re, does not appear 
and the flow continues to stabilize with increasing 
IReI. The critical Reynolds number Re, is weakly 
dependent on Pr, and its value is around Re = 50. 
Figure 6 is a typical example of the effect of variations 
of Re on Gr, for small Prandtl number fluids. 

Like the previous studies [6], the neutral curve for 
variations in wave numbers with Grashof numbers 
has two minima for Re = 0. The higher value of the 
wave number minimum defines the instability induced 
by the shear mode (mode A), while the lower values 
represent the instability induced by the buoyant 
modes (modes B and C). For small Prandtl numbers 
the shear force defines the instability, and the higher 
wave number of the two minima is the critical value. 
For Re # 0, two lower values of the wave number 
minimum appear and three minima are found. The 
wave number minimum caused by mode C is smaller 
than that induced by mode B. Figures 7 and 8 are plots 
of the critical wave number k, vs Prandtl numbers for 
different Re. The discontinuous points represent the 
locations where the mode transition occurs. For 
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FIG. 5. The critical Grashof number vs Prandtl number for FIG. 7. The critical wave number vs Prandtl number 
Re = 0,50 and 100. Re = 0,SO and 100. 
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smaller Pr, the critical wave number k, is weakly 
dependent on Pr, while for higher Pr, it increases as 
Pr increases. The critical wave number is a strong 
function of Re. From Fig. 7, it is clear that for Re > 0 
the wave number increases when Re increases. When 
the shear mode is dominant, the critical wave number 
increases with decreasing Re for Re < 0. For 
Re = - 100 and 8. I < Pr < IO, the critical wave num- 
ber is determined by mode C. 

The critical wave speed is defined as c, = o,/(kc Gr,). 
Figures 9 and 10 demonstrate the critical wave speed 
variation of Pr for different Re. The critical wave 
speed is a very weak function of the Prandtl number, 
as the shear mode (mode A) dominates the instability. 
This is contrary to the case of Re = 0, in which the 
multicell flow pattern for Re # 0 is no longer station- 
ary. The flow is driving upward (c, > 0) for 
Re = -200, 50 and 100, while it is moving downward 
(c, < 0) for Re = - 100. As the Prandtl number in- 
creases above a certain value, the value of the critical 
wave speed switches to a higher value in which the 
buoyant mode is dominant. For Re = 0, two critical 
wave speeds having the same magnitude with different 
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FIG. 9. The critical wave speed vs Prandtl number for Re = 0, 
50 and 100. 

FIG. 

10 r 

hr-- 
I I 

10 15 20 

Pr 

IO. The critical wave speed vs Prandtl number 
Re = 0, - 100 and -200. 

for 

sign appear at a fixed Pr as the buoyant force domi- 
nates the instability. Therefore, the unstable parallel 
flow becomes a pair of oscillatory travelling waves 
with the right boundary layer moving upward, 
induced by mode C, and the left boundary layer mov- 
ing downward generated by mode B. For the Reyn- 
olds numbers considered here, downward travelling 
waves (c, < 0) are predicted when the instability is 
dominated by the buoyant force, except for Re = 100 
and 8.1 < Pr < 10, where the travelling wave is mov- 
ing upward (c, > 0). When mode B is dominant, the 
travelling wave speed decreases as Re increases. 

4. CONCLUSIONS 

The linear stability of a flow field induced by the 
combination of a thermal buoyancy force and a shear 
force arising from a moving sidewall in a vertical slot 
has been studied. The results show three different 
kinds of instability: one shear mode and two buoyant 
modes. When the instability is dominated by the shear 
mode (for small Prandtl number fluids) the results 
show that the flow is stabilized by the downward 
motion of the right sidewall, which is initially desta- 
bilized by a very small upward velocity, and then 
restabilized for faster upward velocities. For insta- 
bility states dominated by a buoyant mode generated 
by the left boundary layer (for high Prandtl number 
fluids), the flow is stabilized by either the upward or 
downward motion of the right sidewall. Three wave 
minima are found where the higher value corresponds 
to the instability generated by the shear mode and the 
smaller values to the buoyant instability. For a fluid 
with a Prandtl number near 10, the parallel flow 
may be destabilized by a small downward velocity of 
the sidewall since the most unstable mechanism is 
switched from a shear mode to a buoyant mode. The 
buoyant instability induced by the right boundary 
layer only appears for fluids with Prandtl numbers 
near 10 subjected to a slight downward motion of the 
sidewall. Based on our results and taking into account 
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the effect of sidewall motion, the unstable flow in a 3, 
tall slot will not become stationary no matter which 
mode is dominant. 4 
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